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It is shown on the basis of scaling arguments that a disordered interface between two elastic solids will quite
generally exhibit static and dry friction �i.e., kinetic friction which does not vanish as the sliding velocity
approaches zero� because of Tomlinson-model instabilities that occur for small-length-scale asperities. This
provides a possible explanation for why static and dry friction are virtually always observed, and superlubricity
almost never occurs.
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I. INTRODUCTION

A few years ago, Muser and Robbins �1� proposed that
static friction between clean crystalline solid surfaces, whose
crystal axes were rotated by an arbitrary angle with respect to
each other so that the surfaces are incommensurate, would be
zero. This is commonly known as superlubricity �2�. The
apparent lack of friction for crystalline surfaces rotated by an
arbitrary angle with respect to each other �which is the most
common configuration� appears to go against common expe-
rience that almost all solid surfaces exhibit static friction. In
order to explain the fact that superlubricity is rarely ob-
served, they then proposed that the likely source of static
friction for such surfaces is the existence of mobile dirt mol-
ecules, always present at any interface. The mobile mol-
ecules seek out local energy minima at the interface, which
results in the surfaces being pinned with respect to each
other; i.e., there is static friction. In fact, there can also be
superlubricity for smooth disordered surfaces. In Refs. �3,4�
it was argued that a flat disordered interface between two
macroscopic-size surfaces which do not interact chemically
will exhibit effectively no static friction for interface interac-
tion per unit interface area small compared to the shear elas-
tic constant and high friction for interface interaction above
this value. This frictionless regime is known as the weak-
pinning regime and the large friction regime is known as the
strong-pinning regime. In Ref. �3�, I argued that the existence
of micron-length-scale asperities at an interface can result in
both slow speed kinetic friction �often referred to as dry fric-
tion� and static friction, resulting from the fact that these
asperities can occur in multistable equilibrium configura-
tions, which result in dry friction as a consequence of the
Tomlinson model �5� and static friction as well. The require-
ment for asperities being multistable is that the force on an
asperity on one surface due to its interaction with a second
surface dominate over the elastic forces resulting from its
distortion, as a consequence of its interaction with the second
surface. Since the interaction of an asperity with the second
surface varies on atomic length scales, the distance over
which the asperity distorts is negligibly small compared with
its size �about a micron�. Since micron length scales are still
large compared with atomic spacings, however, the resulting
static and dry friction is still likely to be quite small, indicat-
ing that the Muser-Robbins picture is still basically correct.

The basic idea of Ref. �6� and the work presented here is
as follows: Any rough surface has asperities on multiple
length scales, which means, for example, that if there are
asperities on the micron scale, the interface between two of
these asperities in contact will have a bunch of smaller than
micron scale asperities in contact. At the interface between a
pair of these smaller-scale asperities there are still smaller-
scale asperities in contact. This continues until we reach
atomic scales. The smallest length scale �the one just before
one reaches atomic dimensions� is denoted by L0. These are
the asperities that are actually in contact with the second
surface, and hence they must support all of the load. As we
attempt to slide the surfaces relative to each other, asperities
on all length scales are distorted. If the asperity’s interaction
with the second surface is large enough compared with the
asperity’s elastic energy, an asperity at a given length scale
can exhibit Tomlinson-model instabilities �5�. �Note that the
force exerted by the second surface on all asperities at all
length scales above L0 is transmitted through smaller-length-
scale asperities at the interface between this asperity and the
second surface.� These instabilities will result in nonzero dis-
sipation even in the limit of vanishing sliding velocity, which
will give rise to dry friction �i.e., nonzero kinetic friction in
the slow-sliding-speed limit�, and one can argue that if there
is dry friction, there will also be static friction �5�. The simu-
lation work presented in Ref. �7� supports this picture for the
case in which the potential acting across the interface is ex-
ponential, in the sense that it finds static friction for self-
affine surfaces, whereas when a hard-wall potential is used,
static friction does not occur �i.e., there is “superlubricity”�.
The model interface potential used in Ref. �6� gives rise to a
force component along the surface, which makes it act effec-
tively more like the exponential than the hard-wall potential
model of Ref. �7�. In Ref. �6�, scaling arguments were used
to establish criteria for the occurrence of these instabilities
on all length scales. The purpose of that publication was to
suggest a possible mechanism for why stiff and hard carbon
films, treated with hydrogen to saturate dangling bonds at the
surface, should be excellent lubricants. Up to now, most of
the experimental studies of these materials have focused on
the question of how the hydrogen affects the lubricating
properties of these films, by saturating the dangling bonds at
the interface �8�. The question raised in Ref. �6� and the
present study is that once the bonds are saturated, what pos-
sible mechanism can there be for stiff films being good lu-
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bricants? Plasticity �which was not discussed in Ref. �6�, but
is discussed here� will likely play an important role for
small-length-scale asperities as well. It will be argued that
plastic deformation under the high degree of stress acting on
the small-length-scale asperities will enhance the tendency
for multistability to occur for these asperities, resulting in an
increased tendency for the occurrence of static and dry fric-
tion. Recent work on contact mechanics �9,10� makes it pos-
sible to provide a more complete treatment of the scaling
theory of Ref. �6�, allowing a more numerical study of the
conditions under which static friction can arise as a conse-
quence of multiscale roughness, without the need to postu-
late that static and dry friction can only occur when there are
mobile ion dirt particles present at the interface �1�, at least
for surfaces that can be modeled as self-affine over a few
length scales. Combining the scaling theory of Ref. �6� with
the analytic contact mechanics theory of Ref. �10� allows us
to relate the occurrence of static and dry friction �i.e., kinetic
friction in the slow-sliding-speed limit� to the contact area at
various length scales. It also allows us to determine the con-
ditions under plastic deformation is expected to be important,
and a discussion is given of how plastic deformation affects
the occurrence of static and dry friction. By combining the
results of Refs. �6,10�, it was possible to make more precise
statements than was possible using the methods of Ref. �6�
alone concerning the conditions under which surfaces coated
with materials with high-shear elastic constants will lead to
low friction, by expressing the criterion for this to occur in
terms of parameters describing the nature of the roughness of
the surface, in addition to the elastic constants.

The next section summarizes the results of Ref. �6� and
makes some improvements and corrections. In Sec. III, the
scaling theory of Ref. �6� is expressed in the language of
Persson’s theory of contact mechanics �10�, and the results of
this theory are used to obtain information on the conditions
under which large static and dry friction are likely to occur.

II. EFFECTS OF ROUGHNESS (ASPERITIES ON
SEVERAL LENGTH SCALES)

As in Ref. �6�, we consider two surfaces in contact which
are disordered so that those atoms which are in contact are
randomly distributed over the interface. In order to simplify
the discussion, we will consider as our model for the inter-
face a rough elastic surface in contact with a perfectly atomi-
cally flat rigid surface. This has been argued in the past to be
equivalent to the more correct model of two rough elastic
surfaces in contact, for the contact mechanics problem, in
which there are only forces normal to the surface �9–11�.
While it is not a rigorously correct representation of the
problem when there are frictional �i.e., shear� stresses present
as well, it should give correct orders of magnitude for the
scaling treatment considered on Ref. �6� and here. Let us also
assume that the atoms in contact at the interface interact only
with hard-core interactions. This could occur either because
the surface atoms are chemically inert and there is negligible
adhesion or because the surfaces are being pushed together
with a sufficient load so that the hard core interactions domi-
nate. Let � denote the load or normal force per unit interface

area; a, the mean atomic spacing; and c, the fraction of the
surface atoms of one surface that are in contact with the
second surface. Then, each of the atoms in contact must con-
tribute on average to the normal force a force, of order
�a2 /c. Since the force due to the hard-core interaction be-
tween a pair of atoms acts along the line joining the atoms,
for most relative positions of the atoms, it has a component
along the interface, as illustrated in Fig. 1.

The surfaces are assumed to be rough on nm length scales
as illustrated schematically in Fig. 2. The nm length scale
denotes the overall length and width of the interface, and n
=0 denotes the smallest length scale. Asperities at the n=0
length scale contain atoms that are in contact with the flat
substrate, which represents the second surface. Consider the
zeroth-, the lowest-order �i.e., the smallest� asperity first. Let
it have a height of order L0� and a width of order L0. To find
its distortion resulting from the sum of the substrate potential
energies of all of the atoms of the asperity which are in
contact with the substrate, we must minimize the sum of its
elastic and substrate potential energies. The substrate poten-
tial energy is given by V0�ca

1/2L0 /a�f0��x0 /a�, where V0 is
the amplitude of the interaction of a single atom with the
substrate, resulting primarily from hard-core repulsions be-
tween the atoms, ca is the mean fraction of atoms at the
interface which are in contact with the substrate, �x0 is the
amount that the surface in contact with the substrate slides

FIG. 1. This figure illustrates how the hard-core interaction be-
tween a pair of atoms, one belonging to each of the surfaces in
contact, can both support the load and give rise to static friction
between the surfaces. Since the force F between the pair of atoms
can have both a component normal to the interface, Fz, which con-
tributes to the normal force supporting the load, and a component
along the interface, Fx, the mean value of Fx must be proportional
to the mean value of Fz.

Asperity Hierarchy

FIG. 2. This is a schematic illustration of the asperity hierarchy
on the top surface sliding on a flat substrate �i.e., the bottom block�.
�Real asperities have arbitrary shapes, as opposed to the square
shapes shown in this schematic representation.� Each asperity of a
given order has a number of �smaller� asperities of one order lower
on its surface. In turn, each of these lower-order asperities has a
number of �smaller� asperities of one order lower. This continues
until we reach the zeroth-order asperity, whose surface consists of
atoms, although only three orders of asperities are illustrated here.
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under the influence of the substrate potential as the asperity
distorts while all higher-level asperities remain in an arbi-
trary rigid configuration, and f0��x0 /a� is a function of order
unity which gives the variation of the substrate potential with
�x0 for fixed, undistorted asperities of higher order �i.e.,
larger size in the present context�. �Clearly, each of the
zeroth-order asperities has a different function; f0 denotes a
generic function describing the interface potential energy for
a typical zeroth-order asperity.� Each function clearly must
possess multiple minima. We are assuming here that the sur-
face of the asperity in contact with the substrate is in the
weak-pinning limit �4�. The factor �ca

1/2L0 /a�, which is of the
order of the square root of the number of atoms in this sur-
face, expresses this fact. If the surface of the asperity in
contact with the substrate is in the strong-pinning limit in-
stead, this factor will be replaced by ca�L0 /a�2, the number
of atoms at the interface. �The factors of ca

1/2 and ca, respec-
tively, in these expressions were inadvertently not included
in Ref. �6�.� Treating this asperity as an elastic three-
dimensional solid in contact with the substrate we find from
the discussion in Ref. �4� that the interface between the sub-
strate and this asperity is in the weak-pinning limit if �0
�ca

1/2K, where �0 is the mean load per unit interface area
supported by this asperity. Assume that a fraction c0 of the
zeroth-order asperities have atoms belonging to them in con-
tact with the substrate. Let c1 represent the fraction of next-
order �first-order� asperities whose zeroth-order asperities are
in contact with the substrate, c2, the fraction of second-order
asperities whose first-order asperities have their zeroth-order
asperities in contact with the substrate, etc., up to �nm�th
order. Then �0=� / �c0c1c2¯cnm−1�, where � is the load per
unit apparent area of the surface of the whole solid. Then, we
conclude that the criterion for the atoms at the interface be-
tween the zeroth-order asperity and the substrate to be in the
weak-pinning regime is that �� �ca

1/2c0c1c2¯cnm−1�K. We
see from this inequality that the more fractal the surface is,
the more difficult it is for the zeroth-order asperity to be in
the weak-pinning regime. The cost in elastic energy due to
the shear distortion of the asperity can be determined by the
following scaling argument: The elastic energy density for
shear distortion of the asperity is proportional to ��ux /�z�2,
where ux represents the local displacement due to the distor-
tion, the x direction is along the interface, and the z direction
is normal to it. The ux must scale with �x0, and the depen-
dence of ux on z has a length scale L0�. Thus the elastic strain
energy of the asperity is of the order of
�1 /2�L0

2L0�K��x0 /L0��
2, where K is the shear elastic constant

and ��x0 /L0�� is the average shear strain and L0 is the mean
width of the asperity. Using a perhaps more correct nonrect-
angular shape for the asperities is shown in Appendix A to
only produce a correction of order unity. Minimizing the sum
of these expressions for elastic and substrate potential en-
ergy, we obtain

�x0/a � �V0/Ka3�ca
1/2�L0�/L0�f0���x0/a� �1�

since f0�, the derivative of f0 with respect to its argument, is
of order 1, from the definition of f0. Let us follow a line of
reasoning like that of Ref. �5�, a modified version of which is

given in Ref. �6�. For �V0 /Ka3�ca
1/2�L0� /L0� below a certain

value of order 1, for small V0 /Ka3, Eq. �1� can have only one
solution for �x0. The reason for this is illustrated in Fig. 3.
Under such circumstances the average kinetic friction, in the
limit as the sliding velocity approaches zero, is zero. For a
surface with an infinite number of asperities, distributed uni-
formly in space, it was shown in Ref. �5� that the static
friction is zero as well. A modified version of this argument,
which points out that for a surface with a finite number of
asperities the static friction is nonzero, but smaller by a fac-
tor of a /L0 compared to what it would be if the contributions
of the asperities to static friction acted coherently, is pro-
vided in Appendix B of Ref. �6�. If this asperity is in the
strong-pinning limit instead, we replace the factor of
ca

1/2�L0 /a� by ca�L0 /a�2 to account for this, and as a result,
the factor ca

1/2�L0� /L0� gets replaced by ca�L0� /a�, which could
make the asperity satisfy the criterion for multistability more
easily, and consequently, the friction from these asperities
will no longer be reduced by the factor a /L0. For a load per
unit area, �, assumed to be primarily due to hard-core inter-
actions, we may assume V0��a3 /c, where c is the fraction
of the surface atoms which are in contact with the substrate.
By the above arguments, c=cac0c1c2¯cnm−1. Then, we see
that the criterion for the zeroth-order asperity to be multi-
stable is ��c0c1c2¯cnm−1K. If the criterion for weak pin-
ning for the zeroth-order asperity surface is not satisfied, the
criterion for monostability of this asperity gets changed from
the above inequality to �V0 /Ka3�ca�L0� /a��1.

At the next level, we have an asperity surface in contact
with the substrate which consists of a collection of the lowest
level �i.e., the smallest� asperities discussed in the previous
paragraph. Assuming this asperity to be in the weak-pinning
regime, the potential of interaction with the substrate, which
is the sum of all of the interactions of the substrate with the
lowest-order asperities, which cover a first-order asperity, is
of order V0�cac0�1/2�L0 /a��L1 /L0�f1��x1 /a�. Here L1 repre-
sents the width of this order asperity, �x1 represents a dis-
placement of the lower surface of this level asperity for fixed
�i.e., undistorted� configurations of all higher-order asperi-
ties, and f1 denotes one of the functions which describe the
interface potential energy of one of the first-order asperities.
It has at least one minimum and runs over a range of mag-
nitude 1 as its argument runs over a range of order 1. �The
factor of �cac0�1/2 and cac0, respectively, in these expressions
were inadvertently not included in Ref. �6�.� The elastic en-

FIG. 3. This figure illustrates the solution of Eqs. �1�–�3�, for
�x0, �x1, and �xn, respectively. f��x� is a schematic illustration of
the functions f0�, f1�, and fn�, and x denotes �x0, �x1, or �xn, respec-
tively. Lines A and B represent the line y= �Ka3 /V0��Ln /Ln��x, for
�Ka3 /V0��Ln /Ln���1 and �Ka3 /V0��Ln /Ln���1, respectively. For
the situation illustrated by line A, there are multiple solutions �i.e.,
multistability�, while for the situation illustrated by line B, there is
only one �monostability�.
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ergy is of the order of �1 /2�L1�L1
2K��x1 /L1��

2, by the argu-
ment given above Eq. �1�, where L1� is the height of the body
of the first-order asperity, which is assumed to be much
larger than L0�. Minimizing the sum of these two energies, we
obtain

�x1/a � �V0/Ka3��cac0�1/2�L1�/L1�f1���x1/a� . �2�

Again, we conclude, based on the arguments presented in
Ref. �5�, that the static friction is reduced by a factor of
L0 /L1 below what it would be if the contributions to the
static friction from each of the miniasperities at this level
acted coherently. If the zeroth-order asperities attached to
this first order asperity are in the strong-pinning regime, the
factor of �cac0�1/2L1 /L0 in the equation for the interaction of
this asperity with the substrate is replaced by cac0�L1 /L0�2,
and hence, the right-hand side of Eq. �2� has the factor
�cac0�1/2L1� /L1 replaced by cac0L1� /L0, which can make the
solutions to this equation for �x1 multistable.

Continuing this procedure, we find that the displacement
of the nth-level miniasperity is found by solving

�xn/a � �V0/Ka3��ca ¯ cn−1�1/2�Ln�/Ln�fn���xn/a� , �3�

where Ln and Ln� are the width and height of the body of the
nth-level asperity. �The factor of �ca¯cn−1�1/2 in this expres-
sion was inadvertently not included in Ref. �6�. The general
conclusions of Ref. �6�, however, are not changed by this
omission.� If �V0 /Ka3��ca¯cn−1�1/2=� / �K�cncn+1¯cnm

�1/2�
�1 and Ln� /Ln�1 for all n, asperities of all orders will be
multistable, implying the occurrence of large static friction.
If the condition given earlier for strong pinning at the zeroth-
order asperity interface—namely, ��ca

1/2c0c1¯cnm
K

= �c /ca
1/2�K is satisfied—the condition for multistability on all

levels, �� �cncn+1¯cnm
�1/2K, is certainly satisfied for the

zeroth-order asperities, but may break down at some order n.
Since more of the c’s will appear in the product of the c’s in
this expression for lower-order than higher-order asperities,
we conclude that the lower-order asperities are more likely to
be multistable than the higher order ones. If the nth-order
asperity is in the strong-pinning regime, the factor
�ca¯cn−1�1/2�Ln� /Ln� in Eq. �3� gets replaced by
�ca¯cn−1��Ln� /a�, which leads to the condition for multista-
bility: �� �cncn+1¯cnm

��Ln� /a�K.
At least in the limit in which the stress acting on a given

length-scale asperity resulting from the load that it carries is
small compared to Young’s modulus, recent theories of con-
tact mechanics for surfaces with multi-length-scale rough-
ness �9,10� show that the area of contact on all length scales
�even the smallest� is approximately proportional to the ap-
plied load. This implies that although the smallest-length-
scale asperities will certainly flatten out as the load increases
�which means in the language of the present paper that a
larger fraction of the subasperities on the surface of this as-
perity will come in contact with the second surface, and a
similar picture holds for each of its subasperities�. Conse-
quently, on the basis of these theories, the amount of load
carried by each of the atoms which are in contact with the
second surface will not decrease as a consequence of more of
these atoms being in contact with the second surface.

III. APPLICATION OF PERSSON’S CONTACT
MECHANICS THEORY

Persson has developed an analytic contact mechanics
theory for self-affine surfaces �10�. In Ref. �10�, a differential
equation is derived for the ratio of the contact area at the nth
length scale to the nominal area of the interface A, i.e.,
P��n�=A��n� /A, as a function of the independent variable
�n=L /Ln, known as the magnification. The picture provided
in this theory is based on the following simple idea: If one
imagines looking at the interface area with a hypothetical
instrument of very poor resolution, one might not see the
surface roughness on smaller length scales than L=Lnm
�where L is the length or width of the interface�. If one uses
a hypothetical instrument of better resolution, one might see
roughness on a length scale Lnm−1 �i.e., one might see asperi-
ties of size Lnm−1�, but roughness on smaller length scales
�e.g., Lnm−2� is not seen. In other words, on that length scale,
the surface appears to be flat. With better resolution, one sees
roughness on a length scale Lnm−3, etc. The surface is as-
sumed to be self-affine, meaning that the roughness seen on
length scale Ln when all lengths parallel to the surface are
multiplied by Ln+1 /Ln, lengths perpendicular to the surface
are multiplied by a factor �Ln+1 /Ln�H, where 0�H�1. H is
related to the fractal dimension Df by Df =3−H �12,13�. The
differential equation for P��n� is solved using the height-
height correlation theory from the theory of roughness
�12,13�.

In Ref. �6�, the roughness at the nth length scale was
treated using the parameter cn which denotes the fraction of
nth-length-scale asperities which are in contact with the sub-
strate, whereas Ref. �10� denotes the nth-length-scale rough-
ness by the contact area at that length scale A��n�, which is a
potentially measurable quantity. Hence, there is much to be
gained by expressing the results of Ref. �6� in terms of the
parameters of Ref. �10�. Furthermore, by expressing the re-
sults of Ref. �6� in terms of the parameters of Ref. �10�, it is
possible to use the numerical estimates of the contact area
found in Ref. �10� to estimate the conditions under which
one is expected to have large or small friction. One important
application of this approach is to obtain more accurate esti-
mates of the conditions under which materials with large
elastic constants and/or hardness might be able to function as
good lubricants. Then, in this section, a connection will be
made between the parameters used here and the contact area
on a given length scale �, A��� used in Ref. �10�, were �
=L /�, where L is the largest length scale of the surface. On
a length scale �=Lnm

, there will be �Lnm
/Lnm−1�2 asperities of

lateral size Lnm−1, a fraction cnm−1 of which are in contact
with the substrate. It is clear that Lnm

denotes the largest
length scale, which represents the dimensions of the actual
surface. On this surface, there will be cnm−2�Lnm−1 /Lnm−2�2

contacting asperities of size Lnm−2, and on each of these as-
perities, there will be cnm−3�Lnm−2 /Lnm−3�2 contacting asperi-
ties of size Lnm−3. As we continue, we reach the Ln+1-scale
asperities, each of which contains cn�Ln+1 /Ln�2 contacting
asperities of linear dimension Ln. If we were to stop at this
length scale and assume that the area of contact of each of
these Ln-length-scale asperities is smooth �because we are

J. B. SOKOLOFF PHYSICAL REVIEW E 78, 036111 �2008�

036111-4



imagining that our measuring instruments cannot see such
small length scales�, and the total area of contact of the sur-
face with the substrate will be given by the product of the
above numbers of contacting asperities at each length scale
and Ln

2 �the cross-sectional area of an nth-scale asperity�, or

P��n� = A��n�/A��nm
� = cnm−1�Lnm

/Lnm−1�2cnm−2�Lnm−1/Lnm−2�2

cnm−3�Lnm−2/Lnm−3�2
¯ cn�Ln+1/Ln�2�Ln

2

A
�

= cnm−1cnm−2cnm−3 ¯ cn+1cn, �4�

where we have used the fact that A�Lnm
�=Lnm

2 , and hence, the
quantity P��n�=A�Ln� /A�Lnm

� is a quantity used in Persson’s
theory �10�, where the magnification �n=Lnm

/Ln. The largest
length scale Lnm

, which will often be denoted by L, is the
length of sliding solid, and A=L2 is its nominal area. Using
this relationship between Persson’s P��n� and the quantity cn
used in Ref. �6� and, here, we can write the criterion for
multistability of the nth-order asperity discussed under Eq.
�3� of the last section as

� � �a/Ln��P��n�K =
a

Ln�

A��n�
A

K , �5�

assuming strong pinning at all asperity interfaces, and

� � �Ln/Ln���P��n�P��a��1/2K =
Ln

Ln�

�A��n�A��a��1/2

A
K , �6�

where �a=Lnm
/a, assuming weak pinning. From Eqs. �5� and

�6�, it is clear that for sufficiently small A��n�, the asperities
will tend to be multistable, resulting in nonzero static and dry
friction. By writing the criteria for multistability of the as-
perities in terms of Persson’s P��n�, we can use the results of
his theory of contact mechanics to determine the load depen-
dence of these criteria.

Let us now use the theory of Ref. �10� to determine the
contact area per asperity at a particular length scale �call it
the nth-length scale�. Since the number of �nm−1�-level as-
perities in contact is cnm−1�Lnm

/Lnm−1�2 and the number of
�nm−2�-level asperities residing on one of the �nm−1�-level
asperities in contact is cnm−2�Lnm−1 /Lnm−2�2, etc., we conclude
that the number of nth-level asperities in contact is

cnm−1�Lnm
/Lnm−1�2cnm−2�Lnm−1/Lnm−2�2

�cnm−3�Lnm−2/Lnm−3�2
¯ cn�Ln+1/Ln�2, �7�

which is equal to

cnm−1cnm−2cnm−3 ¯ cn�Lnm
/Ln�2 = A�Ln�/Ln

2. �8�

Using the fact that the contact area per nth-order asperity is
equal to the nominal area of the interface A�Lnm

� divided by
the above expression for the number of nth-level asperities in
contact, we obtain for the mean contact area per asperity at
the nth-level Ln

2, independent of the load. If we stop at
nth-order in Persson’s treatment �10�, we take the surfaces at
smaller length scales to be perfectly flat. In reality, there
must also be a small enough length scale in Persson’s theory

in which asperities at all smaller length scales will get com-
pletely flattened out, if the solid is treated as being com-
pletely elastic, but of course long before that point, we must
deal with plasticity. For the interested reader, the issue of
asperity flattening is discussed in Appendix C for an earlier,
although less complete, theory of multilength scale asperities
due to Archard �14�.

Persson shows using his theory of contact mechanics �10�
the not unexpected result that as the magnification parameter
�n=Lnm

/Ln approaches infinity, Ael��n� /A, where Ael��n� de-
notes the area of contact associated with elastic deformation
of asperities, approaches zero. Then EYApl��n�=�A, where
Apl��n� is the contact area associated with plastic deformation
of asperities under load and EY denotes the hardness of the
material �i.e., the compressional stress at which plastic defor-
mation takes place�. Some of Persson’s arguments are sum-
marized and some steps are filled in Appendix B. Generally,
when the lowest-length-scale asperities have failed plasti-
cally under compression, if one attempts to shear the asperity
by sliding the surfaces relative to each other, it will also have
failed plastically in shear motion �15�, and hence, either the
resulting shear stress due to shearing of the asperity will be
nearly independent of the shear strain or it will increase with
shear strain, but much more slowly, as a function of shear
strain, than it would if its response were elastic. In the latter
case, the tendency towards multistability will be greatly in-
creased over what it would be if the shear response were
elastic, implying an increase in the dry and static friction. In
the former case, the asperity would shear without any in-
creased restoring force, most likely indicating that it will
break as it shears relative to the substrate. This indicates that
the system has switched over to a regime in which a good
part of the kinetic friction is due to wear �i.e., the breaking of
the smallest-length-scale asperities�. The static friction will
likely go to zero if this were a completely correct model for
plastic flow, because in such a case, there is no energy cost to
shear the asperity.

As mentioned earlier, Persson has demonstrated that as �n
approaches infinity, all parts of the contact area exhibit plas-
ticity. �The argument is discussed in Appendix B of this ar-
ticle.� It is important, however, to estimate the value of �n for
which plastic deformation of asperities on the nth scale be-
comes important. The rough criterion that we will use to
estimate this is when the mean value of the compressional
stress over an nth-order asperity becomes comparable to the
yield stress EY. One may determine when plasticity at the
smaller-length-scale asperities sets in using Persson’s theory,
assuming that the distortions on all length scales are elastic
until this point. Persson finds in the elastic regime the fol-
lowing expression for the contact area at nth-scale magnifi-
cation:

A��n�
A

= P��n� =
4��1 − 	2�

q0h0E
�1 − H


H
�1/2

�n
�H−1�, �9�

where H=3−Df, where Df is the fractal dimension of the
surface, q0=2
 /L, h0 is the rms surface height fluctuation,
and 	 is Poisson’s ratio. Since we must have
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��	�n
A��n� = �A , �10�

	
��	�n
=� / P��n�, and hence, from Eq. �9�, we have

	
��	�n

E
=

q0h0

4�1 − 	2�� 
H

1 − H
�1/2

�n
�1−H�. �11�

When 	
��	�n
becomes comparable to EY, one must consider

plasticity. Persson considers H=0.8, a value typical for pave-
ment and q0h0 equal to 0.001 and 0.01. �Smaller values of H
represent rougher surfaces, because by the definition of a
self-affine surface, reducing the length scale along the sur-
face by a factor � �with ��1� reduces the height fluctuations
only by a factor �H, and since H�1, larger height fluctua-
tions occur over smaller lateral length scales.� Using these
numbers in the above expression for 	
��	�n

, we find that for
L /Ln=108, typical for atomic-level asperities, and
	
��	�n

/E�0.04 for q0h0=0.001 and 0.4 for q0h0=0.01.
EY /E=0.1 for glass, 0.0013 for steel, and 0.0125 for hard
plastic. Thus, atomic-scale asperities are clearly in the plastic
regime. For diamond films, EY, the hardness, is about
100 GPa �16�, and since E is 1080 GPa �17�, EY /E�0.09.
Other diamondlike carbon films with large sp3 �i.e., tetrahe-
dral �� bond content also exhibit EY /E of comparable mag-
nitude. We see here the important role played by the rela-
tively large values of EY /E that exist for these materials. On
the basis of the above arguments, we conclude that it is pos-
sible for sufficiently smooth surfaces that for diamondlike
carbon films, asperities on all length scales that exist for a
crystalline material might be elastic.

At this point, let us reexamine the argument presented in
Ref. �6�, that the large values of Young’s modulus of stiff
coatings, such as diamondlike carbon films, can account for
their excellent lubricating properties, making use of Eqs. �5�,
�6�, and �9�. Combining Eqs. �5� and �6� with Eq. �9�, we
obtain for the condition for the nth-order asperities to be
multistable

K

E
�

Ln�

a

q0h0

4�1 − 	2�� 
H

1 − H
�1/2

�n
�1−H�, �12a�

if the interfaces between each level asperity less than or
equal to nth order are in the strong-pinning regime �defined
in the previous two sections�, or

K

E
�

Ln�

Ln

q0h0

4�1 − 	2�� 
H

1 − H
�1/2

��n�a��1−H�/2, �12b�

if the interfaces between each level asperity less than or
equal to nth order are in the weak-pinning regime. Since the
n=0 order asperities are the ones most likely to be multi-
stable, let us apply Eqs. �12a� and �12b� to the n=0 case, for
which they reduce to

K

E
�

L0�

a

q0h0

4�1 − 	2�� 
H

1 − H
�1/2

�a
�1−H� �13a�

and

K

E
�

L0�

L0

q0h0

4�1 − 	2�� 
H

1 − H
�1/2

�a
�1−H�, �13b�

respectively. The condition for weak pinning at an n=0 as-
perity interface found in the last section is

� � ca
1/2�c0c1 ¯ cnm−1�K , �14�

which when written in terms of Persson’s notation �10� is

� � ca
−1/2A��a�

A
K . �15�

Substituting for A��a� /A using Eq. �9�, this condition can be
written as

K

E
�

ca
1/2q0h0

4�1 − 	2�� 
H

1 − H
�1/2

�a
�1−H�. �16�

As can be seen from Eqs. �13b� and �16�, in order for the
zeroth-order asperities to be multistable and at the same time
have their interfaces with the substrate in the weak-pinning
limit, we must have ca

1/2�L0� /L0, which is not difficult to
satisfy unless the zeroth-order asperities are all extremely
short and thick and/or have a large fraction of the atoms at
their interfaces in contact with the second surface.

IV. CONCLUSIONS

It has been shown, using a scaling theory of friction for
surfaces with multiscale roughness �6� combined with Pers-
son’s theory of contact mechanics that, in contrast to surfaces
with only single-scale roughness which appear to always ex-
hibit superlubricity, unless one postulates the existence of
mobile dirt particles at the interface, clean surfaces with mul-
tiscale roughness will almost always exhibit static and dry
friction, characteristic of almost all solid surfaces. The static
and dry friction come about because asperities at the smallest
length scales will be multistable, because they support all of
the load if they remain elastic or will exhibit plastic failure.
Combining the scaling theory of Ref. �6� with the analytic
contact mechanics theory of Ref. �10� allows us to relate the
occurrence of static and dry friction �i.e., kinetic friction in
the slow sliding speed limit� to the contact area at various
length scales. It also allows us to determine the conditions
under plastic deformation is expected to be important, and a
discussion was given of how plastic deformation affects the
occurrence of static and dry friction. By combining the re-
sults of Refs. �6,10�, it was possible to make more precise
statements than was possible using the methods of Ref. �6�
alone concerning the conditions under which surfaces coated
with materials with high shear elastic constants will lead to
low friction, by expressing the criterion for this to occur in
terms of parameters describing the nature of the roughness of
the surface, in addition to the elastic constants. Numerical
finite-element calculations used recently to study contact me-
chanics �9� can also be applied to this problem. Since they
appear to yield results for the contact mechanics problem
which are qualitatively similar to those of Ref. �10�, how-
ever, the results for the multistability �i.e., Tomlinson model
�5�� problem should not differ significantly from those pre-
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sented here. There is one small difference, however, which is
worth considering. Whereas Ref. �10� finds that A��n� /A is a
linear function of � in the elastic regime, Ref. �9� reports that
this function is a slightly sublinear function of �. As already
suggested in Ref. �6�, this would imply that as � increases,
the interface could possibly switch from having all asperities
in the monostable regime, resulting in low friction, to the
multistable regime, resulting in high friction, when � be-
comes sufficiently large.

The issue has been raised in the literature �18� that ther-
mal energy could under the right circumstances eliminate
Tomlinson-model instabilities. In the context of the model
studied in this article, in which for macroscopic surfaces
there will be an infinite number of lowest-length-scale as-
perities in contact with the second surface, such thermal ac-
tivation effects will likely lead to creep motion in which the
two surfaces when under shear stress, even below the force
of static friction, will slide over very long time scales. In
future work the question of whether the present model can
account for the observed magnitudes of such creep motion
will be explored.

APPENDIX A: EFFECTS OF ASPERITY SHAPE ON
FRICTION

In Sec. III, we assumed that the actual shape of an asper-
ity would have an insignificant effect on the multiscale Tom-
linson model that has been developed here. In this section,
we will examine whether this is likely to be a reasonable
assumption. Asperities on all length scales are likely to ini-
tially be peaked, but as they are pressed together, they flatten
out. The amount of flattening of a given length scale asperity
depends on the amount of load that asperity carries, which
itself depends on the degree of compression of the asperity,
as is known to happen for single-length-scale asperities �11�.
The amount of load carried by an asperity depends on the
number of atoms in contact with the substrate, as we have
seen earlier that each atom carries a load of the order of
Pa2 /c. Typically, near the peak of an asperity at any length
scale, the profile can be represented to a good approximation
by a parabaloid whose cross-sectional area at a distance z
from apex is proportional to z �11�. It is not a bad approxi-
mation to assume that we can use this result for an asperity
which gets compressed because it is in contact with the sub-
strate. Then let us assume that a compressed asperity has a
flat peak at a minimum value of z �zmin�, whose area is pro-
portional to zmin. Then, using the parabaloid approximation
for the asperity, we have 
r2�2
Rz, let us imagine slicing
each such asperity into slices of thickness �z, each of whose
area is proportional to z. Then, the shear stress between
slices n and n+1 is equal to

�2
Rzn/a�K��un+1 − un

a
�zn+1 − �un − un−1

a
�zn , �A1�

following the method for taking the continuum limit of the
harmonic approximation treatment of a discrete lattice dis-
cussed in Ref. �19�. This must be zero when the asperity is in
equilibrium. The continuum limit of this equation is

�

�z
� ��zu�

�z
� = 0, �A2�

whose solution is

�u

�z
=

c

z
, �A3�

where c is a constant. Since at z=zmin, we require that
	K�
rc

2���u /�z�	z=zmin
=�
rc

2, where rc is the contact radius
and � is the shear stress acting on the contact area of the
asperity, because this is the condition for equilibrium of the
asperity. This gives us c=�zmin /K. Then, �u /�z= ��zmin /Kz�.
We may find the elastic energy of an asperity from

Eelast = �1/2��
zmin

zmax

dz 2
RzK� �u

�z
�2

= �
R��zmin�2/K��
zmin

zmax dz

z
= �
R��zmin�2/K�ln� zmax

zmin
� .

�A4�

In order to compare this with the expression used in the
scaling treatment of multiscale asperities used in Ref. �6� and
here, let us now write this expression in terms of �u, given
by

�u = ��zmin/K��
zmin

zmax dz

z
= ��zmin/K�ln� zmax

zmin
� . �A5�

Solving for � in terms of �u and substituting in the above
expression for Eelast, we obtain

Eelast =

KR

ln� zmax

zmin
��u2 =

K
L2zmax

2 ln� zmax

zmin
��

�u

zmax
�2

, �A6�

where L is defined by 
L2=
rmax
2 =2
Rzmax. For the

nth-order asperity, we identify L with Ln and zmax−zmin with
Ln�. Since for all except for the extremes of complete com-
pression and nonexistent compression zmax and zmax−zmin are
of comparable magnitudes and ln�zmax /zmin� contributes only
a factor of order unity, we conclude that our original scaling
treatment of multiscale asperity multistability, which does
not consider the actual shape of the asperities, will give the
correct orders of magnitude.

APPENDIX B: DEMONSTRATION OF THE OCCURRENCE
OF COMPLETELY PLASTIC CONTACT AT VERY

SMALL LENGTH SCALES

In Appendix C of Persson’s paper on contact mechanics
�10�, he obtains a differential equation for the area of contact
due to plastic deformation alone by integrating his diffusion
equation,

�P��,��
��

= f���
�2P��,��

��2 , �B1�

over �, to obtain
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�

��
�

0

�Y

d� P��,�� = f����− � �P��,��
��

�
�=0

+ � �P��,��
��

�
�=�Y

� . �B2�

The integral �0
�Yd� P�� ,�� is by definition P���=Ael��� /A.

The first term on the right-hand side of Eq. �B2� was shown
in Ref. �10� to be equal to −dAnon��� /d�, the negative of the
derivative of the surface area not in contact with respect to �.
In the limit as �Y approaches infinity, the second term on the
right-hand side of Eq. �B2� vanishes. Since in this limit there
is clearly only elastic deformation, the latter term must be
associated with plastic deformation. Then in this limit, Eq.
�B2� can be written as

dAel

d�
+

dAnon

d�
= 0, �B3�

and hence Ael+Anon must equal a constant A in this limit and
that constant must be A. Then, clearly when �Y is finite, we
must identify the last term on the right-hand side of Eq. �B2�
with dApl /d�. Using his solution for P�� ,�� Persson finds by
integrating this expression that

Ppl��� =
Apl���

A

= − �2/
��
n=1

�

�− 1�nsin �n

n

��1 − exp�− �n
2�

1

�

d��g����� , �B4�

where �n=n
�0 /�Y, and

Pnon��� =
Apl���

A
= �2/
��

n=1

� � sin �n

n
��1 − exp�− �n

2�� ,

Ppl��� =
Apl���

A

= − �2/
��
n=1

�

�− 1�n� sin �n

n
�

��1 − exp�− �n
2�

1

�

d��g����� . �B5�

Since as � approaches infinity �1
�d��g���� approaches infinity,

we find that in the infinite � limit, the sum of Eqs. �B4� and
�B5� becomes

Pnon + Ppl =
Anon���

A
+

Apl���
A

=
4



�

n=1,odd

� sin�n
�0

�Y
�

n
= 1

�B6�

by a well-known identity, which implies that none of the
asperities at the regions of contact for �=� are in elastic
contact. Since there is no stress acting on the area Anon by

definition and �=�Y at all areas of plastic contact, we must
have

�YApl = �A . �B7�

This result also follows if we take the � approaches infinity
limit in Eq. �B4�, making use of the identity

− x =
2



�

n

�− 1�n sin�n
x� �B8�

for −1�x�1.

APPENDIX C: A DEMONSTRATION THAT ARCHARD’S
MODEL OF MULTISCALE ASPERITIES PREDICTS

THAT THE CONTACT AREA PER ASPERITY INCREASES
WITH INCREASING LOAD

It is interesting to note that if we calculate the area per
nth-order asperity using Archard’s theory of contact mechan-
ics for fractal surfaces �14�, we find that it is proportional to
the load to a power which decreases as n decreases, implying
that even if the surface is assumed to be perfectly elastic, the
smaller-length-scale asperities will flatten out at sufficiently
high load, provided that we put a small-length-scale cutoff in
his theory.

In Archard’s model �14� for elastic distortion of multiscale
asperities at the longest length scale an asperity has a hemi-
spheric shape and distorts according to Hertz theory �11�.
The area of contact of such an asperity with a flat surface is
assumed to be covered by a continuous distribution of
smaller-scale hemispherically shaped asperities. The largest-
length-scale asperity described above is only in contact at the
areas of contact of these smaller asperities. The smaller as-
perities are in turn also assumed to be in contact only at the
locations of a continuous distribution of still smaller asperi-
ties. Archard argues that as we consider shorter and shorter
length scales, the contact area becomes more and more
nearly proportional to the load carried by the original
longest-length-scale asperity.

At his longest length scale, Archard finds that the contact
area is proportional to W2/3, where W is the load and the
asperity density is independent of load. At the next smaller
length scale considered by him, the contact area is propor-
tional to W8/9 and the number density of these asperities is
proportional to W2/3, and hence the contact area per asperity
�i.e., the quotient of these two� is proportional to W2/9. At the
next smaller length scale, the contact area is proportional to
W26/27 and the asperity density is proportional to W8/9, lead-
ing to a contact area per asperity �the quotient of the contact
area and asperity density� of W2/27. Next order gives a con-
tact area proportional to W44/45 with an asperity distribution
proportional to W26/27, leading to a contact area per asperity
of W2/135. As we continue this process, the asperity density is
always proportional to the same power of W as the contact
area at the previous length scale. Hence, it is clear that as we
go to successively smaller length scales, the contact area per
asperity is proportional to a smaller and smaller power of W.
Thus, it is clear that as W increases, the smaller-length-scale
asperities’ contact area will grow, suggesting that the
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smallest-length-scale asperities will flatten out as the load
increases, since the amount that asperities on smaller and
smaller length scales flatten out as a function of W decreases
as we go to smaller and smaller length scales. Since this
theory does not assign a precise radius to each length scale
asperity, it is difficult to assess the degree to which smaller-
length-scale asperities flatten out �i.e., how the contact area
per asperity compares to the original size of an asperity�.
Since the contact area at each length scale appears to be

proportional to the inverse asperity density raised to the same
power as the power of W that the contact area is proportional
to at that length scale, we can take that quantity as related to
the original asperity size. Since the contact area per asperity
grows as W to a smaller power, it is possible that the asperi-
ties do not flatten out in Archard’s model, in the sense that
the contact area remains small compared to the asperity size
as W increases.
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